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An exact solution to the Navier-Stokes equations for the flow in a channel or tube 
with an accelerating surface velocity is presented. By means of a similarity trans- 
formation the equations of motion are reduced to a single ordinary differential equation 
for the similarity function which is solved numerically. For the two-dimensional flow 
in a channel, a single solution is found to exist when the Reynolds number R is less 
than 310. When R exceeds 310, two additional solutions appear and form a closed 
branch connecting two different asymptotic states a t  infinite R. The large R structure 
of the solutions consists of an inviscid fluid core plus an O(R-f)  thin boundary layer 
adjacent to the moving wall. Matched-asymptotic-expansion techniques are used to 
construct asymptotic series that are consistent with each of the numerical solutions. 

For the axisymmetric non-swirling flow in a tube, however, the situation is quite 
different. For R 6 10.25, two solutions exist which form a closed branch. Beyond 
10.25, no similarity solutions exist within the range 10.25 < R < 147. Once R exceeds 
147, multiple solutions reappear, which form two closed branches that connect four 
different asymptotic states at  infinite R. The possibility of an axisymmetric flow with 
swirl is considered, and two sets of swirling solutions are found to exist for all R > 0. 
These solutions, however, do not evolve from the R = 0 state nor do they bifurcate 
from the non-swirling solutions a t  any finite value of R. 

1. Introduction 
I n  this paper we present an exact solution to the steady-state Navier-Stokes equa- 

tions for the flow inside an infinitely long channel (two dimensions) or tube (axisym- 
metric) when the surface velocity of the channel or tube grows linearly with the 
streamwise co-ordinate. As is the case with most such exact solutions, the one to be 
presented here is of the similarity type, that is, by an assumption as to the form of 
the flow field, the equations of motion can be reduced to an ordinary differential 
equation for the similarity function. One of the principal characteristics of this 
solution is the presence of reverse flow, i.e. the streamwise velocity changes sign in 
the transverse direction. Like other exact solutions which contain regions of reverse 
flow, for example, the outflow in a diverging channel - Jeffery-Hamel flow - or the 
flow between two infinite rotating disks (see Batchelor 1967), the present problem has 
solution branches which originate and terminate a t  infinite Reynolds number R and 
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also has multiple solutions for some range of R. However, an unusual feature of the 
present problem is that for the flow in a tube there is a range of R within which no 
solutions exist. 

The motivation for this problem arose in studying the flow inside a long slender drop 
placed in an extensional flow (Brady & Acrivos 1981 b)  ; as a result, some of the unusual 
features of the similarity solution are not due to  unphysical boundary conditions. 
The similarity transformation (cf. (2.1) below), in which the velocity field is linearly 
proportional to the streamwise co-ordinate, has also arisen in a number of other 
applications. For example, while considering the problem for the steady secondary 
streaming in a channel or tube with pulsating walls, Secomb (1978) studied the same 
mathematical problem, but for negative Reynolds numbers. Thus, these two investi- 
gations complement one another. The flow in a porous channel or tube with uniform 
suction or injection a t  the walls also gives rise to the same ordinary differential equa- 
tions with, however, different boundary conditions a t  the surface: f( l)  = l ,f '( l )  = 0 
rather thanf(1) = 0 andf'(1) = 1 as in (2.4). This latter problem has already been 
studied in considerable detail by several authors, most notably Terrill (see Terrill 
1964, 1965; Terrill & Thomas 1969; Robinson 1976; Skalak & Wang 1977; as well as 
others referred to in these papers) ; and, as we shall show in 3 2, these earlier solutions 
actually form a subset of ours. Thus, although it is a straightforward task to construct 
the porous-channel (or tube) solutions from those to  be presented below, the converse 
is not true. We shall see, however, that these two sets of solutions do have much in 
common. Proudman ( 1960) also investigated the large-Reynolds-number behaviour 
of the solutions for the porous-channel problem, and, as we shall see, many of his 
results apply to  the case under consideration. 

Apart from its physical applications, the flow in a channel with an accelerating 
surface velocity is an interesting problem to study because it leads to an exact solution 
and, as such, can give information on the structure of solutions to the Navier-Stokes 
equations. In  addition, since it turns out that the similarity solution also satisfies the 
boundary-layer equations, we obtain the added bonus of gaining information about 
these types of flows as well. But, perhaps the greatest interest for studying this flow 
arises from the presence of a gap in the solutions for the flow inside a tube. We shall 
see in another publication (Brady & Acrivos 1981a) that by resolving this apparent 
paradox we can gain insight into fluid flows that is of a much more general nature 
than the specific problem considered here. In  this paper, however, we shall only be con- 
cerned with presenting the exact solution for the accelerating channel and tube flows. 

I n  5 2 we shall consider the two-dimensional problem for the flow inside a channel. 
Section 2.1 introduces the similarity transformation that reduces the equations of 
motion to a single ordinary differential equation. This equation can be solved numeric- 
ally with ease, and the results are presented in $2.2.  I n  $ 3  2.3 and 2.4 we discuss the 
asymptotic analysis of the solution for small and for large Reynolds numbers, respec- 
tively, and show that asymptotic expansions can be constructed which are consistent 
with the numerical results. 

Section 3 is devoted to the axisymmetric problem for the flow inside a tube, and the 
discussion parallels that of $ 2 .  The axisymmetric solutions have many features in 
common with those of the two-dimensional case, with the notable exception that no 
solutions exist within the range 10.25 < R < 147. I n  an effort to find solutions in this 
range of R, we consider, in $3.3,  the possibility of an axisymmetric flow with swirl - 



Steady $ow with accelerating surface velocity 129 

that is, we allow for the presence of a swirling component of motion. It will be seen 
that, although such solutions do indeed exist, they do not evolve from R = 0, nor do 
they bifurcate from the non-swirling solutions at  any finite value of the Reynolds 
number. Furthermore, we shall see that the swirling solutions have velocity profiles 
which are quite unrealistic from the physical point of view. Hence, they do not offer 
a resolution of the paradox concerning the non-existence of similarity solutions with- 
out swirl within this range of R. 

2. Two-dimensional flow 
2.1, The governing equations 

We wish to examine here the flow inside a two-dimensional, infinite channel which is 
being driven by a surface velocity proportional to the streamwise co-ordinate. The 
flow is to be anti-symmetric about the origin x = 0; thus, we need only consider the 
semi-infinite domain x 2 0 (see figure 1). The channel has a half-width a,  the velocity 
of the accelerating surface is denoted by Ex and the fluid density and viscosity are p 
and ,u respectively. 

We seek a solution to the steady-state Navier-Stokes equations in the semi-infinite 
domain such that the fluid velocity a t  the surface, y = a ,  is equal to that of the moving 
boundary u = Ex, v = 0, where u and v are, respectively, the x and y components of 
the fluid velocity. We shall restrict our attention to flows that are symmetric about the 
centre line y = 0; thus, au/ay = v = 0 along this line. Also, we shall render the equa- 
tions dimensionless by dividing all position co-ordinates by a, all velocities by Ea and 
the pressure p by ,uE (a viscous scaling). 

It is not difficult to see that the Navier-Stokes equations admit an exact ‘similarity 
solution’ for this problem of the form (all variables now being dimensionless) 

u = xf’(y) and v = -f(y), (2 . la ,  b )  

where the prime denotes differentiation with respect to y. The corresponding pressure 
is 

P = PdY) f 9Px2, ( 2 - 2 )  

where ~3 is a constant and p,, is a function of y only. Substituting the above into the 
x-momentum equation leads to 

with the boundary conditions 
f”-P = R{(f’)”ff”), (2.3) 

f(0) = f”(0)  = 0, f ( 1 )  = 0, f ’ (1)  = 1, (2.4) 

where R = pEa2/,u is the shear Reynolds number and is the only parameter of the 
system. 

Equation (2.3) is third order with four boundary conditions, the fourth serving to 
determine the unknown constant p in the expression for the pressure. On the other 
hand, the y-momentum equation merely yields a relation between p,, and f, which, 
being of no interest, shall henceforth be ignored. We also note parenthetically that the 
similarity function f satisfies a boundary-layer equation in which the transverse CO- 

ordinate y is O( 1). 
We shall seek all possible solutions to the two-point boundary-value problem for 
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.u = Ex,  u = 0 

u = o  I a 

aulay = v = o 
FIGURE 1. Schematic diagram for the flow in a channel with an accelerating surface velocity. 

f for all non-negative values of the Reynolds number, 0 ,< R < co. Negative Reynolds 
numbers are permissible and correspond to flows in which the wall of the channel 
moves inward from infinity to x = 0 and have been considered in part by Secomb 
(1978). (We say in part because Secomb presented only a single solution when R < 0 
whereas Terrill (1965), and Terrill & Thomas (1969) have shown that the correspon- 
ding porous-channel and tube problems with injection have two solutions, and by 
analogy we would expect the same in this problem.) Furthermore, for our physical 
application, the surface of the drop only moves in the positive x-direction, and our 
interest was, therefore, restricted to positive values of R. I n  contrast, for the porous- 
channel problem, positive and negative Reynolds numbers correspond to suction and 
injection respectively and therefore refer to cases of physical interest. 

2.2. The numerical solutions for the similarity function f 
By means of a simple stretching transformation similar to that used by Terrill(1964), 
it is possible to convert (2.3) into an initial-value problem and, in addition, eliminate 
the Reynolds number from the equation. We let 

f = Ry-'$(f;) and 6 = Ryy, (2.5a, b )  

where y is as yet unknown, which when substituted into (2.3) and (2.4) yields 

$"-p* = (#')2-#$", (2.6) 

$ ( O )  = #"(O) = 0, $(RY) = 0,  $'(RY) = R-l, (2.7) 

p* = P/R4y-1. (2.8) 

with 

The above can now be solved as an initial-value problem for $, with /3* as a parameter. 
To this end, we set $ ' (O)  = - 1,0 and + 1 (the three values for $ ' ( O )  correspond to the 
possible directions for the fluid velocity along the centre line), and then vary p* over 
the range - co < P* < co for each choice of $ ' ( O ) .  It is easy to see that any other choice 
for $'(O) simply corresponds to changing p* and would be redundant because p* is 
required to cover the entire range of real values. The numerical solution for $ proceeds 
as follows: Given $' (O)  and p*, we integrate (2.6) as an initial-value problem until a 
zero of $ is encountered, say a t  co. The slope at this point gives directly the Reynolds 
number, and the value of Q together with R determine y .  With y ,  R and p*, we can 
then compute the original function f and the desired parameter p from (2.5) and (2.8). 
Since our analysis if restricted to positive R, the condition for stopping the marching 
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FIGURE 2. (a) The pressure coefficient p for the two-dimensional channel flow as a function of 
the Reynolds number. Three classes of solutions were found, labelled I, 11, and 111. The dashed 
curve branching o f f  near R = 30 corresponds to the series solution for small R (see §2.3),  while 
that emanating from large R corresponds to the asymptotic solution for R --f co (see §2.4(a)). 
( b )  The high-Reynolds-number behaviour of the pressure coefficient p .  The dashed curve corres- 
ponds to the asymptotic form of p as R --f co ; the coefficients were determined from the numerical 
solutions, but the functional dependence on R was determined analytically (see 3 2.4 (b ) ) .  

scheme is #(Q) = 0 and #‘(Q) > 0. Under these conditions, a point must exist within 
the interval 0 < < < co where $’ = 0 ; hence it is clear that all porous-channel solutions, 
for which $’ = 0 at the wall, are a subset of ours. The integration must, however, 
cover the entire range of > 0 to allow for the possibility that there are multiple 
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FIGURE 3. Group I longitudinal velocity profiles at  R = 0, 40, 90, 933.2, and 6574 
for the flow in a channel. 
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FIGURE 4. f” (  i), whioh is proportional to the shear stress at  the channel wall, as a function of R. 

The dashed curve, f”( 1) = Rt, results from the asymptotic analysis as R 3 co (see 3 2.4 (a)). 

zeros of 4 (each with $’(&,) > 0). Following the procedure outlined above, (2.6) and 
(2.7) were integrated using an accurate integration routine. 

The results of the numerical integration are most easily presented by referring to 
figures 2(a)  and ( b ) ,  where p, the pressure coefficient in (2.2), has been plotted as a 
function of the Reynolds number R. Clearly, there exists a single solution for 

0 < R 6 310 

and three solutions beyond R -N 310 up t o  R = 90400, the largest Reynolds number 
for which a numerical solution was computed. These solutions can be conveniently 
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FIGURE 5. Group I1 longitudinal velocity profiles at  R = 6256, 1084, 
614.4, 381.7 and 337.4 for the flow in a channel. 
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FIGURE 6. Group I11 longitudinal velocity profiles at R = 309.5, 605.0, 5780 
and 73 090 for the flow in a channel. 

divided into three groups, labelled I, I1 and I11 in figure 2 (a).  Figure 2 ( b )  shows the 
large-Reynolds-number behaviour of /I, and it is worth noting that all the solutions, 
but especially those of group 111, develop their high-R structure rather slowly, 
requiring values of R in excess of lo4 before their asymptotic states are reached. Also, 
in spite of the fact that an exhaustive search was made to locate solutions having 
multiple zeros in q5, only solutions with single zeros were found. 
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The group I solutions vary continuously from R = 0 with p = 3 to R + 00 and 
/3 +- 1. Typical velocity profiles, i.e. f‘(y), for these solutions are shown in figure 3.- 
As can be seen, these solutions evolve from the R = 0 creeping-flow profile into a flow 
having the familiar boundary-layer structure, i.e. an inviscid, and in this case uniform, 
core of strength O(R-4) plus an O(R-4) thin boundary layer next to the moving surface. 
In  figure 4 the velocity gradient a t  the wall f ”( i), which is proportional to the shear 
stress, is seen to  increase monotonically with R, becoming O(R4) a t  large Reynolds 
numbers. 

I n  contrast, the group I1 solutions evolve from the R + 00 asymptote, where they 
seem to be identical in all respects to those of group I a t  the same high Reynolds numbers, 
and proceed along curve I1 in the direction of decreasing R until the point marked X 
in figure 2(a) is reached, where R = 337.4. Typical velocity profiles for the group I1 
solutions are presented in figure 5. (All of these flows occur at  relatively high Reynolds 
numbers, and only the profiles in the core are shown because, as figure 4 clearly indi- 
cates, the boundary layers are virtually identical to those of group I.) As R is decreased, 
the group I1 core velocity profiles evolve from being uniform as R + co to having an 
unusual shape with a maximum in the reverse velocity just beneath the boundary 
layer. The evolution continues until the point X is reached where the centre-line 
velocity has increased to zero. (This point corresponds to the $‘(0) = 0 solution of 
(2.6) and (2.7), there being only one such solution for all p* since, by a further trans- 
formation, p* can be eliminated from the equation and the boundary conditions.) 

The group I11 solutions, shown in figure 6, are actually a continuation of those of 
group I1 beyond the point X .  They are distinguished, however, by the presence of a 
region of fluid moving out towards infinity along the centre line y = 0, i.e. the region 
of reverse flow now lies off the centre line. For these solutions, the pressure coefficient 
p decreases monotonically with R and becomes O(R) as R --f co (see figure 2(b) and 
the asymptotic analysis of $2.4)  in contrast to the solutions of groups I and 11, where 
/3 remains O(1). The boundary layer adjacent to the inviscid core still has an O(R-3) 
thickness, however, as is clearly shown in figure 4 where the plots off ”( 1) against R 
for the three classes of solutions are all essentially identical. 

I n  spite of some unusual features, the similarity solutions, especially those of group 
I, exhibit most of the characteristics expected of real fluid motions. Specifically, a 
solution exists which evolves continuously from the zero-Reynolds-number state as 
the Reynolds number is increased, ultimately attaining an asymptotic structure 
where the flow domain is inviscid except for a thin boundary layer. We shall examine 
next the asymptotic expansion of the solution for small and for large R. 

2.3. The asymptotic analysis for small R 

When the Reynolds number is small, (2.3) can be easily solved using a regular pertur- 
bation expansion in R. The solution for zero Reynolds number can be found analytic- 
ally, as can all higher-order terms. The nth term in the expansion is simply a power 
series in y of O(yzn-I) whose coefficients depend on those from all n - 1 previous terms. 
The algebra of calculating these coefficients can be relegated to the computer, and an 
expansion for p to 29 terms in R was thereby obtained (Brady 1981). 

An analysis of this perturbation series by Pad6 approximants (Van Dyke 1974) 
revealed the presence of a complex conjugate pair of singularities a t  r = 34 and 
8 = k 166.5”) where r and 8 are the magnitude and phase angle in the complex plane. 
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Since these singularities do not lie on the positive real axis in R, they are of no physical 
significance. No effort was made to extend the radius of convergence of this series by 
mapping the singularities away. A comparison between this series and the numerical 
results (cf. figure 2 a )  shows very good agreement almost right up to the singularity. 

2.4. The asymptotic analysis for large R 
Since we have obtained an exact solution to the Navier-Stokes equations which 
exhibits a boundary-layer structure for large Reynolds numbers, it is of considerable 
theoretical interest to examine whether the, by now standard, technique of matched 
asymptotic expansions can yield a representation for the solution that agrees with the 
numerical results, because there are rather few instances in which asymptotic analyses 
have been compared with exact solutions. I n  fact, since the accelerating channel flow 
involves only a single ordinary differential equation, the asymptotic analysis is alge- 
braically straightforward. This analysis can be conveniently divided into two cases: 
the first when ,8 remains O( 1 )  as R -+ 00, and the second when p scales with the Reynolds 
number for large R. 

2 . 4 ( ~ ) .  p = O ( 1 )  US  R + co 

The numerical solutions for both groups I and I1 show that premains O( 1) for large R 
and suggest that, as R -+ co, the flow should consist of an inviscid core where the velo- 
city is O(R-4) plus a conventional O(R-3) thin boundary layer at  the moving surface. 
It would appear reasonable to expect, therefore, that the high-Reynolds-number 
structure of the flow could be determined analytically using standard boundary-layer 
theory. 

Let us first examine the flow in the core, which to a first approximation we take to 
be inviscid. Since the entrainment velocity into the boundary layer is expected to be 
O(R-4) - a fact which we shall presently verify - matching between the two regions 
requires that f be O(R-4) in the core. Hence, we let 

f ( Y )  = R-4g(y), (2.9) 

(2.10) 

(2.11) 

where g ( y )  is an O(1) function. Substituting the above into (2.3) yields 

(g’)2 - gg“ = - p + R-hg”‘, 

g(0) = g”(0 )  = 0, 

the solution to which must satisfy the boundary conditions on the centre line, 

as well as a matching requirement with the boundary-layer solution as y -+ 1. 
Equation (2.10) also arises in the core flow for the porous-channel problem and has 

been studied by Proudman (1960). Of the possible inviscid solutions presented by 
Proudman, it is not difficult to see that the leading-order solution to ( Z . l ) ,  denoted 
here by q,,(y), which satisfies (2.11) is simply 

(2 . i2)  

where a = (-/3)* and c is an arbitrary constant which can take on all real, positive 
and negative, values, including zero. We see also that p must be negative in order 
for the solution in the core to be real. One should note that, in order to simplify the 
presentation, we have not expanded p in a series in R-P, which, in any case, would only 
add to the expansion some additional terms proportional to sin (cty). 
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I n  view of the boundary conditions a t  y = 1 ,  we must require that f'(y) be O(1) 
throughout the boundary layer; hence, in this region we have 

where 
f(y)  = R-$h( Y )  and y = 1 - R-$Y, 

h,"' - hh" + (h')2 = - PR-1, 
with boundary conditions on h 

h(0) = 0, h'(0) = - 1, 

(2.13a, b )  

(2.14) 

(2.15) 

plus the requirement that h match with the core solution as Y -+ CO. As expected, the 
boundary layer involves a balance between the viscous and inertial terms, the pressure 
being negligible to leading order. 

Matching the derivatives of h and g, i.e. matching u, yields, to leading order, 
h'(co) = 0, and it is easy to see that the solution to (2.14), with the right-hand side 
neglected, which satisfies this condition along with (2.15) is 

h,(Y) = -(l-e-Y). (2.16) 

This solution appears to  have been first noted by Crane (1970) in his study of the 
boundary-layer flow due to a stretching sheet whose velocity increases linearly with 
distance. 

Matching the entrainment velocity into the boundary layer, h,( Y -+ co) = g,(y --f 1)  
gives 

a 
- I = -sin C f  (c*), (2.17) 

which provides a relation between 01 and c but does not determine either of them 
individually. To leading order then we have a continuous spectrum of possible solu- 
tions for the flow in the core, all with the same boundary layer. Continuing the expan- 
sion in both the core and the boundary layer, one can show (Brady 1981) that the 
core and boundary-layer solutions can be matched to all orders in R-4 for any real 
value of c. The numerical results for both groups I and I1 show very clearly, however, 
that N - 1 and f (y) N - R-* in the core as R -+ 00, which are consistent with the 
asymptotic solutions developed above (cf. (2.12)) if c = 0. I n  this case, (2.12) takes 
the form 

and matching with the boundary-layer solution gives 
%(Y) = ay, 

-1 = a =  * ( - p ) * )  
i.e. p = - 1. Also, a being negative indicates that the fluid in the core is returning from 
infinity. Hence, in order for the asymptotic analysis to agree with the computed re- 
sults, we need to show that c does indeed equal zero. 

To prove that c = 0,  we follow Proudman (1960) and note, upon differentiating 
(2.10) twice, that a viscous layer may appear a t  any y for which g = g" = 0 but g(a) + 0 
-in particular a t  y = 0. This can also be seen from the O(R-4) correction to  the flow in 
the core, 

a .  
g(y) = -sinc$y+R-* B,(sinc*y-c~ycosc~y)- &*sinctyln ltan@yl 

C* 

In ltan&$I d$ +o(R-4)) (2.18) I1 
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where a logarithmic singularity in g" appears as y -+ 0. (Here B, is an unknown con- 
stant to be found from matching.) One obvious way to remove this singularity and 
to ensure that g will be an analytic function a t  y = 0, i.e. to ensure that a viscous layer 
is not necessary, is to set c = 0. In  this case, the core solution is 

9 = - ( - P ) + Y  

to all orders, where ,8 possesses an expansion in powers of €2-4 which enables one to 
match the core and the boundary-layer solutions. 

On the other hand, it is necessary to investigate the st.ructure of this 'internal' 
viscous layer a t  y = 0 in order to ensure that c = 0 is the only possible choice. As 
shown by Proudman (1960), within this region 

f ( y )  = R-)$(z) and z = RAy, (2.19a, b )  

where the equation for $ is 

subject to 
$11' - p = ($')2 - $@", 

$(O) = $"(O) = 0, 

(2.20) 

(2.21) 

as well as a matching condition as z 3 00. The Icading-order solution for I+? is simply 

$0 = az, (2.22) 

which obviously matches with the core. Higher-order terms in the expansion for $ 
will be governed by 

$: +ax$; - 2all.k = Y,(z), (2.23) 

= I+?20) = 0, (2.24) 

where Y, depends only on lower-order solutions and the subscript n refers to the nth 
term in the expansion for $. 

The two linearly independent homogeneous solutions of (2.23) for $A, from which 
the general solution can formally be constructed, are 

exp ( - +aE2) 
9 + a-1 and (9 + a-l) 1 (,p + a-1)2 dk (2.25) 

from which it is immediately apparent that, as was concluded by Proudman (1960), 
a must be positive. In other words, an internal viscous layer can exist only if the 
longitudinal velocity is positive. With this restriction on a, it is then a straightforward 
matter to show (Brady 1981) that, as z + 30, the expansion within the internal viscous 
layer snatches with that of the core as y --f 0, again for any value of c. 

Upon closer examination of (2.17), i.e. the matching requirement between the core 
solution and that in the boundary layer, it  becomes evident that this relation between 
a and c can be satisfied for positive a only if c* > n. In turn, this implies that the core 
solution will not be analytic at  y = n/c* - and perhaps, depending on the value of c, 
a t  y = nn /d ,  n = 2,3,. . . as well - and that another internal viscous layer will be 
required at  that point. The longitudinal velocity along y = n/c4 is, however, negative; 
hence, in view of our earlier analysis, such an internal viscous layer cannot exist. 

We can safely conclude, therefore, that the only choice for c that will lead to an 
asymptotic solution for large R with /3 = O(1) is c = 0, in which case the inviscid 
solution corresponds to an inviscid core with zero vorticity . 
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This conclusion is in agreement with our numerical results in so far as both the 
groups I and I1 solutions have this zero-vorticity core structure for large R. On the 
other hand, the asymptotic analysis to all finite powers of R-4 reveals that there is 
only one asymptotic state with /3 = O( 1)  as R -+ co, whereas, a t  any large finite value 
of R, two numerical solutions were found. To explain this apparent discrepancy, we 
shall appeal to the work of Terrill (1973) for the corresponding porous-tube problem 
(cf. $ 3 )  and to that of Robinson (1976) for the porous channel, where it was shown 
that, when c = 0, the asymptotic expansions for the groups I and I1 solutions differ 
by exponentially small terms, which, when included in the expansion for f in the core, 
lead to two distinct solutions. Since our mathematical system is virtually identical to 
theirs, it is obvious that the same result will apply in the present problem as well. It 
is therefore not necessary to repeat here their lengthy analysis. Thus, by the inclusion 
of exponentially small terms, it is possible to determine uniquely two asymptotic 
expansions for large R that agree with the numerical results. It should be noted, 
though, that neither Terrill nor Robinson considered the possibility that c could be 
non-zero, but simply accepted the numerical results as proof that c had to be zero. 
The proof given above, that all other values of c must be excluded, is far from trivial, 
however, and should be of interest to those dealing with the development of asymptotic 
techniques for solving differential equations. 

2.4(b). /3 = O(R8) as R + 00 
To construct an asymptotic expansion as R -+ co for the solutions of group 111, when 

/3 scales with R, is a more complicated undertaking than that presented in the previous 
section because the functional dependence of /3 on R is not known a priori.  (Not 
having solutions with which to compare his asymptotic results, Proudman (1960) did 
not consider the possibility that /3 could scale with R.) Let us assume, therefore, that 
/3 = O(R8) as R -+ co, where S is to be determined. One can show without much effort 
(Brady 1981) that 6 must lie within the range 0 < 6 < 1. This restriction on 6 also 
ensures that, to leading order, the core will be an inviscid region of flow and that the 
boundary layer will be a conventional, O(R-4) thin, region. In  the analysis that follows, 
which proceeds along the same lines as §2 ,4 (a ) ,  we need only consider the range 
0 < S 6 1, the case 6 = 0 having been studied previously. 

The inviscid core flow involves a balance between the inertial and pressure terms; 
therefore, we define 

f = R-$(l-S)g and /3 = POR8, (2.26a, b )  

where both g and PO are O( 1) .  In lieu of (2. lo), we have then for g 

(2.27) 

whose leading-order solution is obviously the same as before, i.e. (2.12), with /3 replaced 
by PO. Similarly, within the boundary layer we have, in place of (2.14), 

(2.28) 

Since, clearly, the pressure term will enter to leading order only if 6 = 1, we shall 
consider separately the two cases, 0 < S < 1 and 6 = 1. 

Case I : 0 < 6 < 1. When 6 $: 1, f ’  is of a different order of magnitude in the core 
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and in the boundary layer, and matching requires that hA(co) = 0. Thus, the leading- 
order solution for h is the same as (2.16). Matching the functions h and g, i.e. the en- 
trainment velocity v, gives &tho( Y .+ co) = R-*(1-8)g,(y -+ l), and hence go( 1) must 
be zero, which in turn requires that c i  = nn (n = I ,  2 ,3 ,  ...). Since c $. 0,  an internal 
viscous layer must be inserted along the centre line to ensure that f is an analytic 
function giving a > 0 as before. Since c4 = nn, however, another singularity will appear 
a t  y = I (also others a t  y = l /n,  2/n, 3/n, ...), which requires that the boundary-layer 
solution give rise to a term proportional to InY as Y -+ co in order for it to match 
with the core. The structure of the boundary-layer solution with e-y - 1 as the leading 
term, however, precludes this possibility (Brady 198 1 ) ;  therefore, we must conclude 
that 6 cannot lie within the range 0 < 6 < I. 

Case 11: 6 = 1. With S = 1, the flow in the core is O(1) as R + 00, while, within 
the boundary layer, the pressure term must be retained to leading order. The leading- 
order solution in the core will be the same as before, i.e. g,(y) = ( a / c t )  sin ( c i y ) ,  and, 
since g and h are of different orders, the matching condition gives go(l)  = 0,  which 
again requires that c i  = nn, n = 1,2 ,3 ,  ... . Once more, an internal viscous layer 
must be introduced along the centre line, giving a > 0, and the core expansion will 
also have singularities in its higher derivatives a t  y = l /n ,  2/n, 3/n, . . . . When n > 1, 
however, another internal viscous layer will be required about y = l /n  within which 
the zeroth-order solution in the core has the form g,(y) N ( y -  l/n) acosn. The 
longitudinal velocity along this layer will, however, be negative and hence, as shown 
previously, an internal viscous layer cannot exist under these conditions. Thus, to 
have a solution with the assumed structure, n must equal I and the boundary-layer 
solution must give rise to a logarithmic term as Y + 00. (From his numerical results, 
Robinson (1976) also concluded that c* = 77 for the corresponding set of solutions in 
the porous-channel problem, but apparently did not carry out an asymptotic analysis 
of these solutions. As a result his expression for the functional dependence of p on R 
(cf. his equation (4.11)) is incorrect.) Unfortunately, since the pressure term enters 
(2.28) to leading order, it is not possible to obtain an exact solution for h,. Nevertheless, 
we can show (Brady 1981) that the form of this solution as Y + 00 satisfies the matching 
requirements with the core. We can conclude, therefore, that the asymptotic expansion 
as R -+ 00 for the group I11 solutions must have S = I and n = 1, both in perfect agree- 
ment with the computed results (cf. figures 2(b) and 5).  Of course, to complete the 
analysis we would have to determine a or Po, but this we were unable to do, owing to 
the complicated structure of (2.28) which precludes an analytical solution. From the 
numerical solutions of (2.6) we find a = 0.02 (or Po = 4 x and the expansion for 
p is of the form /3 = 4.00 x lO-4R{l+ (4.64 x 102) R-3 + O(R-lln R, R-I)}. 

We have seen then that the asymptotic analysis as R -+ 00 leads to solutions which 
are completely consistent with the numerical results both when p = O(1) and when 
/3 = O(R) .  The structure of the asymptotic solution is, however, somewhat different 
from what one would normally have expected. Specifically, exponentially small terms 
play a key role in distinguishing between the solutions of groups I and 11, and the 
group I11 solutions require the existence of an O(R-i) thick viscous layer at y = 0. 
Also, in spite of the fact that the leading-order core solutions were non-unique, the 
application of matched-asymptotic-expansion techniques allowed us to determine 
unique solutions when /3 = O(1) and to find both S and n when p scales with the 
Reynolds number. 
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3. Axlsymmetric flow 
3.1. The governing equations and numerical results 

Thisiection deals with the similarity solution for the flow in a tube with an accelerating 
surface velocity - the axisymmetric analogue of the problem considered in 3 2. The two 
problems are very much alike; hence, our treatment here will be quite brief. We con- 
sider the same flow as depicted in figure 1 with y replaced by the radial variable r .  
Scaling the equations in the same manner as before, it  is easy to see that the Navier- 
Stokes equations admit an exact similarity solution of the form 

J .  F .  Brady and A. Acrivos 

u = x f ’ ( r ) / r  and v = - f ( r ) / r ,  (3.1) 

where the prime denotes differentiation with respect to r .  The pressure distribution 
accompanying this velocity field has the same form as (2.2). With /? and R being the 
same as in the two-dimensional case, the differential equation satisfied by f is 

with 
f(0) = f’(0) = 0, f(1) = 0, f’(1) = 1. 

By means of the stretching transformation f (r) = R-l$(C), 5 = Ryr and/?* = /?/R*y-l, 

(3.2) was converted to an initial-value problem and numerically solved using the same 
integration scheme as before, i.e. $ “ ( O )  was set eqnal to - 1,0 and + 1, and/?* covered 
the range -00 < /?* < 00. The results of the numerical integration are shown in 
figure 7 where /? has been plotted as a function of R. Unlike the two-dimensional flow, 
there are two solutions for 0 < R < 10.25, followed by a gap in Reynolds number, 
10.25 < R < 147, within which no solutions exist, and then multiple solutions re- 
appear for Reynolds numbers greater than 147. The solutions can be conveniently 
divided into four groups which are labelled I ,  11, 111 and I V  in figure 7. 

The group I soluticns, whose longitudinal velocity profiles, i.e. f ’ ( r ) / r ,  are shown in 
figure 8, begin with the R = 0 solution for which /? = 8 and evolve in a continuous 
manner as the Reynolds number is increased until R = 10.25. Rather than continuing 
beyond this point, the solutions proceed back along the lower portion of curve I, now 
as the Reynolds number decreases. The velocity profi!es along this section of curve I 
have rather curious shapes with a maximum in the velocity just beneath the moving 
surface. As the Reynolds number approaches zero, the flow attains an asymptotic 
state in which both the pressure and the velocity are O(R-l). (The numerical solutions 
give /? N - 35R-1 and f ”(0) N - 35R-1 as R -+ 0.) If /? and f are scaled with R-l, we 
see that the asymptotic form of these solutions satisfies the full equation of motion 
(3.2), but with homogeneous boundary conditions (to leading order). Thus, in some 
sense, they represent an eigensolution of (3.2). Corrections to this asymptotic state 
can be obtained by a regular perturbation expansion in R, as can the other branch of 
curve I emanating from /? = 8. In contrast to the two-dimensional flow, however, 
there are no solutions which evolve continuously from R = 0 to R + 00. 

The lack of solutions beyond R = 10-25 is quite puzzling because, as seen by the 
shear-stress plot of figure 9 (f ”( 1) - 1 is proportional to  the shear stress a t  the wall), 
nothing particularly unusual seems to occur at  this point. Indeed, the shear stress a t  
the wall does not even vanish at this Reynolds number as it does for the corresponding 
porous-tube problem (see Terrill & Thomas 1969). In  order to understand more fully 
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FIGURE 7. The pressure coefficient /3 for the axisymmetric flow in a tube as a function of the 
Reynolds number. Four classes of solutions were found, labelled I, 11, I11 and IV. 
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FIGURE 8. Group I longitudinal velocity profiles a t  R = 0, 10.25, 4.48 and 2.38 
for the flow in a tube. 

the nature of this ‘singularity’ a t  R = 10.25, (3.2) was also solved by means of a 
regular perturbation expansion in R in the same manner as for the two-dimensional 
problem. When the resulting series for p - whose coefficients were computed up to 
O(R35) - was examined by means of a Domb-Sykes plot and Neville table (Van Dyke 
1974, 1978), it was found to possess a square-root singularity on the positive real axis 
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FIUURE 9. f”(1) - 1, which is proportional to the shear stress at the tube wall, as a function of R. 
The dashed curve f”(1) - 1 = R!i results from the asymptotio analysis as R 3 co (see §3.2), 
while the curve f” (  1 )  - 1 = - 68R-’ was determined from the numerical solutions of Group I as 
R + O .  

in Reynolds number a t  R = 10.25. The presence of such a singularity is a further 
indication that the similarity solution no longer provides a valid description of the 
flow when R exceeds 10.25. 

Beyond the gap in Reynolds number, quite a variety of solutions appear. The group 
I1 solutions, shown in figure 10, are in many ways similar to the group I1 solutions 
for the two-dimensional flow (cf. figure 5). They originate from a large R solution, 
which has an inviscid core with velocity O(R-4) surrounded by a thin, O(R-*), boundary 
layer, and vary continuously along curve I1 as the Reynolds number is decreased 
until the point X a t  R = 186.0 is reached. As before, this point corresponds to the 
Reynolds number at which the centre-line velocity has increased to zero. Similarly, 
the group I11 solutions, shown in figure 11, which are a continuation of the group I1 
solutions beyond the point X, have the same structure as the group I11 solutions in 
the two-dimensional flow. Moreover, as seen in figure 9, where f”(  1)  - 1 has been 
plotted as a function of R, a conventional, O(R-3) thin, boundary layer forms adjacent 
to surface for both groups of solutions. 

The velocity profiles for the group IV solutions are shown in figure 12. For large 
Reynolds numbers, when pis O( l), these solutions are of the same form as the group I 
solutions for the two-dimensional flow - that  is, the flow consists of an inviscid core 
of zero vorticity surrounded by a conventional boundary layer. As the Reynolds 
number is decreased from infinity, however, these solutions develop velocity profiles 
in which the fluid a t  the centre line and just beneath the boundary layer moves more 
rapidly than the fluid midway between the centre line and the wall. Once the Reynolds 
number has been decreased below approximately 900, the solutions develop a region 
of flow midway between the axis and the wall where the fluid moves in the positive 
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FIGURE 10. Group I1 longitudinal velocity profiles at R = 2096, 875.0, 
330.3, 147.2 and 186.0 for the flow in a tube. 
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FIGURE 11. Group I11 longitudinal velocity profiles a t  R = 186.0, 
236.0, 455-4 and 1235 for the flow in a tube. 
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direction. As the Reynolds number is increased again, there are now three different 
regions of flow in the core, and, of course, the same boundary layer at the surface. 
Like the group I11 solutions, /3 now scales with the Reynolds number as R -+ 00. 
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FIGURE 12. Group IV  longitudinal velocity profiles a t  R = 4754, 1003, 
769.9, 762.2 and 1017 for the flow in a tube. 

3.2. Asymptotic analysis as R -+ 00 

As might be expected, the asymptotic analysis for the axisymmetric flow is quite 
similar to that for the two-dimensional flow. There are, however, some important 
differences, most notably the fact that there are four solutions as R -+ co in axisym- 
metric flow, but only three in two dimensions. It is of interest, therefore, to present 
the asymptotic analysis for the axisymmetric flow in order to see how these differences 
arise. First of all, if we introduce the change of variables 7 = r2 in (3.2) and define a 
new similarity functionf = 2f, then the equation forf becomes 

- -  
rf’” +f” - t P  = $R{(T)Z -ff”>, (3.4) 

f ( 0 1  = 0, lirn$f” = 0, f(1) = 0, f’(1) = I ,  (3.5) 
t + o  

where p and R are the same as in (3.2). Although the viscous terms and one boundary 
condition a t  7 = 0 are different, the inertial terms are the same as in the two-dimen- 
sional case (cf. (2.3));  hence, much of the previous analysis can be carried over un- 
changed. 

Let us consider the case when P remains O( 1) aB R + m. By using the same scalings 
as in the two-dimensional flow, with the exception that R is replaced by aR, i.e. 
f = ()R)-*g in the core and f = ($R)-* h( Y ) ,  Y = ($R)+* ( 1  -7) in the boundary 
layer, it is easy to see that the leading-order solutions in both regions are the same as 
in the two-dimensional case (cf. (2.12) and (2.16)).  It might be anticipated that by 
differentiating (3.4) a sufficient number of times we could show the need for a viscous 
layer a t  7 = 0 and simply repeat the analysis of 3 2.4. As we shall now show, however, 
this argument is not sufficient to guarantee the existence of a viscous layer. 
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Although governed by the same leading-order solution as in the two-dimensional 
case, the corrections to (3.4) are different; thus, for the O(R-*) correction we have 

a 
g = -sin C*T + (R/4)-4 $ cos c+q + B, (sin ctq - ctq cos C*V)  

C* 

- (sin c*q - c*q cos cay) s,”* In I tan +q5 I dq5 

-Bcosc*q/?jln Itan+$\ dq5 +o((R/4)-*), I) 
where a = & ( - &P)$ and B, is an unknown constant, which should be compared with 
the corresponding expression (2.18). The appearance of the logarithmic terms in 
(3.6) would suggest that the core solution as developed will have singularities a t  
7 = 0 as well as a t  c b j  = nr, with n being a positive integer. In  fact, it can be shown 
that, in contrast to the corresponding two-dimensional solution (2.18), the above 
expression for g i s  analytic a t  7 = 0 (but not for all 7 + 0)) and it is not diEcult to 
show that higher-order corrections will similarly be analytic along the tube axis. 
Therefore, a viscous layer is not necessary along 7 = 0, and it is not possible to conclude 
that c = 0 by repeating the arguments used earlier in the two-dimensional case. 
Recall that in the two-dimensional Aow, y can take on both positive and negative 
values, while, in the axisymmetric flow, 7 can only be positive; hence, the different 
natures of the equations on the centre line. From (2.17), the matching condition 
between the core and the boundary-layer expansions, we can, however, restrict a 
to the range -co < a < - 1 by requiring that 0 < c* .c 7r which would render the 
core solution analytic in O < 9 < I .  

Unfortunately, in spite of many attempts, we have not been able to proceed further 
and prove uniqueness for the p = O( 1) solutions of groups I and IV. It is conceivable, 
of course, that if the expansions in the core and the boundary layer were carried out 
to  higher order, a condition would emerge which would prevent a from lying within 
its acceptable range; however, a resolution of this intriguing question remains to be 
worked out. 

As before, the c = 0 solution gives 

9 = -(-ap)% 
for all R, which, when matched to the boundary-layer solution, leads to p = -4 ,  in 
agreement with the numerical results. Of course, as in the two-dimensional case, the 
solutions for groups I1 and IV differ in their asymptotic expansions by exponentially 
small terms as was shown by Terrill(l973) for the corresponding porous-tube problem. 

As expected, the asymptotic analysis of the solutions when p scales with R as 
R -+ 00 has many features in common with its two-dimensional counterpart treated 
in 8 2.4 (b ) .  In fact, by repeating the analysis of that section, it is easy to show that the 
axisymmetric solutions corresponding to group I11 have a structure virtually identical 
to the two-dimensional group I11 solutions except, of course, for the absence of an 
‘internal viscous layer’ along the axis. Thus, for the group I11 solutions we have 
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and the boundary-layer equation a t  the surface has the pressure gradient included to 
leading order as before. 

The numerical results for both the shear stress a t  the wall (figure 9) and /3 (figure 7) 
indicate that the asymptotic structure of the group I11 and the group IV solutions 
will be very similar. In  fact, the group IV longitudinal velocity profiles in the core 
(see figure 12) can be described by (3.7) with n = 2. In  §2.4(b) we showed that the 
two-dimensional core expansion has singularities at y = l / n  that cannot be removed 
when n > 1 by the insertion of an internal viscous layer a t  that point because the 
axial velocity would then be -a to leading order and therefore negative - recall that, 
in the two-dimensional case, the presence of an internal viscous layer along y = 0 
requires that a be positive. For axisymmetric flows, however, a is not restricted to 
being positive, and we shall now show that it is possible to have a solution with n = 2. 

The boundary layer at  the surface 7 = 1 is the same as in the two-dimensional flow; 
thus, we must require h'(co) ( = - g'( 1)) to be positive in order for the boundary layer 
togive rise to the necessary logarithmic term. From (3.7) we see that h'(m) = -a( - l)lt, 
which is indeed positive for n = 2 if a < 0. With n = 2, the expansion for the core 
solution will have a singularity a t  7 = +, but from (3.7) we see that g' - -a as r,~ -+ 4, 
which is positive when a < 0. Therefore, an internal viscous layer can be inserted a t  
7 = that will remove the singularity. In  general, then, the expansion in the core 
can have one of two structures: n = 1 if a > 0 and n = 2 if a < 0, both with the same 
boundary layer a t  the surface. (It is not difficult to see that n > 3 is unacceptable 
regardless of the sign of a, for this would result in multiple singularities in 0 c 7 < 1, 
all of which could not be removed by introducing internal viscous layers.) Hence, we 
see that the absence of a singularity a t  7 = 0 in the core solutions for the axisymmetric 
flow is of crucial importance because it allows us to have solutions with both positive 
and negative a's. As in the two-dimensional case, the actual value of a or Po cannot be 
easily found. Thus, although we have been able to construct asymptotic expansions 
which are consistent with each of the numerical solutions, both are still partially 
incomplete. 

3.3. AxisymmetricJlow with swirl 
As we have already remarked several times, the most striking feature of the axisym- 
metric solutions is that they exist only outside the Reynolds number range 

10.25 < R < 147. 

One possible way of removing this gap in the solutions is to postulate that an axisym- 
metric flow with a swirling component of motion exists when the Reynolds number 
exceeds 10.25. It is not difficult to  see that the Navier-Stokes equations admit an 
exact similarity solution of the following form 

u = x f ' ( r ) / r ,  21 = - f ' ( r ) / r  and w = xs(r) ,  (3.8a, b, c) 

where w is the angular component of the fluid velocity. The pressure distribution is now 

the O(x2) term of which is seen to vary radially as a result of the swirling motion. The 
equation for f is the same as before, i.e. (3.2) with p replaced by 
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while the equation for s is 

(3.10) 

s(0) = 0, s(1) = 0. (3.11) 

Terrill & Thomas (1973) also computed swirling flows for the corresponding porous- 
tube problem, and their solutions, again being a subset of ours, have the same general 
features as those to be presented below. 

For the numerical computations f was stretched in the same manner as before- 
f ( r )  = R-'qi([), [ = RYr and p* = p/R4Y-I - while s was stretched with R2Y-I, which 
had the effect of converting the equation for f into an initial-value problem and of 
eliminating the Reynolds number from both equations. Unfortunately, the equations 
for f and s cannot be simultaneously converted into initial-value problems, and there- 
fore Newton's method was used to iterate on s'(0). We should also note that when 
R _= 0 the only solution with s of order unity is s = 0 ;  thus, flows with swirling motion 
cannot evolve from the zero-Reynolds-number state. The results for the numerical 
computations are shown in figure 13, where the coefficient Ps( 1 )  of the x2 term in the 
expression for the pressure (see (3.9)), evaluated a t  the surface r = 1, has been plotted 
against the Reynolds number. For comparison, p for the axisymmetric solutions 
without swirl is also shown in figure 13. Two sets of swirling solutions, labelled V and 
VI in figure 13, were found to exist, and we see that swirling solutions do indeed exist 
within the range 10.25 < R < l 4 7 . t  

Figures 14 and 15 depict, respectively, the longitudinal and swirling components 
of velocity for the group V solutions. It is seen that s -+ 0 as R --f co and that the 
swirling solutions become identical to those of group I1 without swirl. I n  fact, since f is 
O(R-4) as R -+ co (corresponding to the group I1 solutions) and (3.10) is linear in s, 
we see that the swirling component of motion can only arise from the exponentially 
small terms that are present in the large-Reynolds-number expansion for f .  As the 
Reynolds number is decreased, the axial component of velocity develops profiles 
which are very similar to those of groups I1 and I11 (cf. figures 10 and l l ) ,  without 
of course, the boundary layer at  the surface. At the same time, the swirling motion 
grows in strength and reaches its maximum midway between the centre line and the 
wall. As R + 0, both f and s become of O(R-l), and, remarkably, the swirling solutions 
have the same mathematical structure as the group I solutions with negative 8. 
Figures 16 and 17 show the longitudinal and swirling components of velocity for the 
group V I  solutions. In  this case, the solutions evolve from the group IV solutions as 
R --f 03, and the axial velocity profiles are seen to be very similar to those of group I V  
(cf. figure 12). Although these solutions are very interesting as an exact solution to 
the Navier-Stokes equations, they do not evolve from the R = 0 state nor bifurcate 
from the non-swirling solutions a t  any finite value of R; thus, it is difficult to imagine 
that they would represent a real flow. 

We have seen in this paper that the similarity solution for the flow inside an infinite 
channel or tube with an accelerating surface velocity has many interesting, and some 

t Although we did not compute swirling solutions for Reynolds numbers less than 30, Terrill 
C% Thomas (1973) showed, for the corresponding porous tube problem, that two sets of swirling 
solutions exists for all R > 0;  hence, we expect the same to  be true in this case. 
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FIGURE 13. The pressure coefficient /3,(1) evaluated at T = 1 for the axisymmetric swirling flow 
in a tube as a function of the Reynolds number. Two classes of solutions were found, labelled 
V and VI. For comparison, /3 for the axisymmetric flow without swirl is also shown. 
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FIGURE 14. Group V longitudinal velocitly profiles a t  R = 108.6, 82.53, 

52.16 and 31.03 for the axisymmetric flow in a tube with swirl. 

very unusual, features. In  general, the similarity solution has many of the character- 
istics expected of real fluid motions, for example, as R -+ 03, a conventional O(R-&) 
thin boundary layer forms adjacent to the moving surface. Also, in the two-dimensional 
flow, a well-behaved set of solutions exists for all values of R, which allows the flow in 
a channel to evolve continuously with increasing Reynolds numbers. In  the axisym- 
metric case, however, the situation is quite different, as there is a range of Reynolds 
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FIGURE 15. Group V swirling velocity profiles at R = 10843, 82.53, 52.16 
and 31.03 for the axisymmetric flow in a tube with swirl. 

1 .o 

0.8 

0.6 

T 

0.4 

0.2 

0.0 

149 

-0.6 -0.4 -0.2 0 0.2 0.4 0-6 

f’(r)/r = u/x 

FIGURE 16. Group VI longitudinal velocity profiles at R = 751.6, 29643 
and 158.5 for the axisymmetric flow in a tube with swirl. 

number within which non-swirling similarity solutions do not exist. This disappearance 
of such similarity solutions at  R = 10.25 raises an important question concerning the 
structure of the flow in a very long tube as the Reynolds number is increased from 
zero to 10-25 and then beyond. In a subsequent paper (Brady & Acrivos 1981a) we 
shall address this question and show how to construct solutions for such systems 
which evolve continuously as the Reynolds number is increased to well beyond 10.25. 
By answering this question and resolving the paradox of the gap in the solutions, we 
shall gain considerable insight into the nature of similarity solutions and into the 
structure of many other flows as well. 
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FIGURE 17. Group VI swirling velocity profiles a t  R = 751.6, 296.8 and 158.5 
for the axisymmetric flow in a tube with swirl. 
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